Genome-wide association study of self-reported food reactions in Japanese identifies shrimp and peach specific loci in the HLA-DR / DQ gene region

Allergies & Asthma


  • 1.

    Eder, W., Ege, M. J. & von Mutius, E. The asthma epidemic. N Engl J Med 355, 2226–2235 (2006).

  • 2.

    Sicherer, S. H. & Sampson, H. A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133, 291–307; quiz 308 (2014).

  • 3.

    Prescott, S. & Allen, K. J. Food allergy: riding the second wave of the allergy epidemic. Pediatr Allergy Immunol 22, 155–160 (2011).

  • 4.

    Kamdar, T. A. et al. Prevalence and characteristics of adult-onset food allergy. J Allergy Clin Immunol Pract 3, 114–5.e1 (2015).

  • 5.

    Rentzos, G., Johanson, L., Sjölander, S., Telemo, E. & Ekerljung, L. Self-reported adverse reactions and IgE sensitization to common foods in adults with asthma. Clin Transl Allergy 5, 25 (2015).

  • 6.

    Le, T. M. et al. Food allergy in the Netherlands: differences in clinical severity, causative foods, sensitization and DBPCFC between community and outpatients. Clin Transl Allergy 5, 8 (2015).

  • 7.

    Ballmer-Weber, B. K. Food allergy in adolescence and adulthood. Chem Immunol Allergy 101, 51–58 (2015).

  • 8.

    Sicherer, S. H. Food allergy. Lancet 360, 701–710 (2002).

  • 9.

    Sforza, S. & Prandi, B. In Encyclopedia of Food and Health (eds Caballero, B., Finglas, P. M. & Toldrá, F.) 743–748 (Academic Press, 2015).

  • 10.

    Sicherer, S. H. Food allergy. Mt Sinai J Med 78, 683–696 (2011).

  • 11.

    Ridolo, E., Martignago, I., Senna, G. & Ricci, G. Scombroid syndrome: it seems to be fish allergy but. it isn’t. Curr Opin Allergy Clin Immunol 16, 516–521 (2016).

  • 12.

    Raphael, G., Raphael, M. H. & Kaliner, M. Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol 83, 110–115 (1989).

  • 13.

    Ebisawa, M., Ito, K., Fujisawa, T. & Committee for Japanese Pediatric Guideline for Food Allergy, T. J. S. O. P. A. A. C. I., The Japanese Society of Allergology. Japanese guidelines for food allergy 2017. Allergol Int 66, 248–264 (2017).

  • 14.

    Kobayashi, T. et al. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticaria/anaphylaxis sensitized by hydrolyzed wheat protein in soap. Int J Dermatol 54, e302–5 (2015).

  • 15.

    Akiyama, H., Imai, T. & Ebisawa, M. Japan food allergen labeling regulation–history and evaluation. Adv Food Nutr Res 62, 139–171 (2011).

  • 16.

    Levine, B. B., Stember, R. H. & Fotino, M. Ragweed hay fever: genetic control and linkage to HL-A haplotypes. Science 178, 1201–1203 (1972).

  • 17.

    Freidhoff, L. R. et al. Association of HLA-DR3 with human immune response to Lol p I and Lol p II allergens in allergic subjects. Tissue Antigens 31, 211–219 (1988).

  • 18.

    Ansari, A. A., Freidhoff, L. R., Meyers, D. A., Bias, W. B. & Marsh, D. G. Human immune responsiveness to Lolium perenne pollen allergen Lol p III (rye III) is associated with HLA-DR3 and DR5. Hum Immunol 25, 59–71 (1989).

  • 19.

    Fischer, G. F. et al. Association between IgE response against Bet v I, the major allergen of birch pollen, and HLA-DRB alleles. Hum Immunol 33, 259–265 (1992).

  • 20.

    Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet 43, 887–892 (2011).

  • 21.

    Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363, 1211–1221 (2010).

  • 22.

    Hirota, T. et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet 43, 893–896 (2011).

  • 23.

    Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44, 187–192 (2012).

  • 24.

    Sun, L. D. et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 43, 690–694 (2011).

  • 25.

    Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 44, 1222–1226 (2012).

  • 26.

    Hong, X. et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6, 6304 (2015).

  • 27.

    Martino, D. J. et al. Genomewide association study of peanut allergy reproduces association with amino acid polymorphisms in HLA-DRB1. Clin Exp Allergy 47, 217–223 (2017).

  • 28.

    Madore, A. M. et al. HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy. Eur J Hum Genet 21, 1181–1184 (2013).

  • 29.

    Fernandez, C. A. et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood 126, 69–75 (2015).

  • 30.

    Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D. & Rao, P. V. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 151, 5354–5363 (1993).

  • 31.

    Pastorello, E. A. et al. Complete amino acid sequence determination of the major allergen of peach (Prunus persica) Pru p 1. Biol Chem 380, 1315–1320 (1999).

  • 32.

    Gamboa, P. M. et al. Two different profiles of peach allergy in the north of Spain. Allergy 62, 408–414 (2007).

  • 33.

    Gaier, S. et al. Purification and structural stability of the peach allergens Pru p 1 and Pru p 3. Mol Nutr Food Res 52(Suppl 2), S220–9 (2008).

  • 34.

    Wang, J. et al. Correlation of IgE/IgG4 milk epitopes and affinity of milk-specific IgE antibodies with different phenotypes of clinical milk allergy. J Allergy Clin Immunol 125(695–702), 702.e1 (2010).

  • 35.

    Sicherer, S. H. & Sampson, H. A. Food allergy. J Allergy Clin Immunol 125, S116–25 (2010).

  • 36.

    Zeng, Y. et al. Novel loci and pathways significantly associated with longevity. Sci Rep 6, 21243 (2016).

  • 37.

    Li, M. X., Yeung, J. M., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131, 747–756 (2012).

  • 38.

    Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40, D930–4 (2012).

  • 39.

    Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42, D1001–6 (2014).

  • 40.

    MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45, D896–D901 (2017).

  • 41.

    Consortium, G. T. E. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  • 42.

    Higasa, K. et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet 61, 547–553 (2016).

  • 43.

    Narahara, M. et al. Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants. PLoS One 9, e100924 (2014).

  • 44.

    Payami, H. et al. Relative predispositional effects (RPEs) of marker alleles with disease: HLA-DR alleles and Graves disease. Am J Hum Genet 45, 541–546 (1989).

  • 45.

    Hollenbach, J. A., Mack, S. J., Thomson, G. & Gourraud, P. A. Analytical methods for disease association studies with immunogenetic data. Methods Mol Biol 882, 245–266 (2012).

  • 46.

    Werfel, T. et al. Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 70, 1079–1090 (2015).

  • 47.

    Marenholz, I. et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat Commun 8, 1056 (2017).

  • 48.

    Verrill, L., Bruns, R. & Luccioli, S. Prevalence of self-reported food allergy in U.S. adults: 2001, 2006, and 2010. Allergy Asthma Proc 36, 458–467 (2015).

  • 49.

    Soller, L. et al. Prevalence and predictors of food allergy in Canada: a focus on vulnerable populations. J Allergy Clin Immunol Pract 3, 42–49 (2015).

  • 50.

    Ben-Shoshan, M. et al. A population-based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. J Allergy Clin Immunol 125, 1327–1335 (2010).

  • 51.

    Niggemann, B. & Beyer, K. Factors augmenting allergic reactions. Allergy 69, 1582–1587 (2014).

  • 52.

    Rentzos, G., Lundberg, V., Stotzer, P. O., Pullerits, T. & Telemo, E. Intestinal allergic inflammation in birch pollen allergic patients in relation to pollen season, IgE sensitization profile and gastrointestinal symptoms. Clin Transl Allergy 4, 19 (2014).

  • 53.

    National_Marine_Fisheries_Service. Fisheries Economics of the United States Report. https://www.fisheries.noaa.gov/resource/data/fisheries-economics-united-states-report-2015 (2015).

  • 54.

    Liu, Y., Wang, Z. & Zhang, J. Dietary Chinese Herbs (Springer Science & Business Media, 2015).

  • 55.

    Lertnawapan, R. & Maek-a-nantawat, W. Anaphylaxis and biphasic phase in Thailand: 4-year observation. Allergol Int 60, 283–289 (2011).

  • 56.

    Smit, D. V., Cameron, P. A. & Rainer, T. H. Anaphylaxis presentations to an emergency department in Hong Kong: incidence and predictors of biphasic reactions. J Emerg Med 28, 381–388 (2005).

  • 57.

    Techapornroong, M., Akrawinthawong, K., Cheungpasitporn, W. & Ruxrungtham, K. Anaphylaxis: a ten years inpatient retrospective study. Asian Pac J Allergy Immunol 28, 262–269 (2010).

  • 58.

    Thong, B. Y., Cheng, Y. K., Leong, K. P., Tang, C. Y. & Chng, H. H. Anaphylaxis in adults referred to a clinical immunology/allergy centre in Singapore. Singapore Med J 46, 529–534 (2005).

  • 59.

    Ross, M. P. et al. Analysis of food-allergic and anaphylactic events in the National Electronic Injury Surveillance System. J Allergy Clin Immunol 121, 166–171 (2008).

  • 60.

    Brown, A. F., McKinnon, D. & Chu, K. Emergency department anaphylaxis: A review of 142 patients in a single year. J Allergy Clin Immunol 108, 861–866 (2001).

  • 61.

    Matsuo, H., Yokooji, T. & Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol Int 64, 332–343 (2015).

  • 62.

    Leung, N. Y. et al. Current immunological and molecular biological perspectives on seafood allergy: a comprehensive review. Clin Rev Allergy Immunol 46, 180–197 (2014).

  • 63.

    García, B. E. & Lizaso, M. T. Cross-reactivity syndromes in food allergy. J Investig Allergol Clin Immunol 21, 162–70; quiz 2 p following 170 (2011).

  • 64.

    Lopata, A. L., O’Hehir, R. E. & Lehrer, S. B. Shellfish allergy. Clin Exp Allergy 40, 850–858 (2010).

  • 65.

    Ravkov, E. V. et al. Identification and validation of shrimp-tropomyosin specific CD4 T cell epitopes. Hum Immunol 74, 1542–1549 (2013).

  • 66.

    Wang, S. et al. Penaeus monodon tropomyosin induces CD4 T-cell proliferation in shrimp-allergic patients. Hum Immunol 73, 426–431 (2012).

  • 67.

    Mascheri, A. et al. Hypersensitivity to Tomato (Lycopersicon esculentum) in Peach-Allergic Patients: rPrup 3 and rPrup 1 Are Predictive of Symptom Severity. J Investig Allergol Clin Immunol 25, 183–189 (2015).

  • 68.

    Gao, Z. S. et al. IgE-binding potencies of three peach Pru p 1 isoforms. Mol Nutr Food Res 60, 2457–2466 (2016).

  • 69.

    Pastorello, E. A. et al. Anti-rPru p 3 IgE levels are inversely related to the age at onset of peach-induced severe symptoms reported by peach-allergic adults. Int Arch Allergy Immunol 162, 45–49 (2013).

  • 70.

    Pastorello, E. A. et al. Clinical role of a lipid transfer protein that acts as a new apple-specific allergen. J Allergy Clin Immunol 104, 1099–1106 (1999).

  • 71.

    Pastorello, E. A. et al. Rice allergy demonstrated by double-blind placebo-controlled food challenge in peach-allergic patients is related to lipid transfer protein reactivity. Int Arch Allergy Immunol 161, 265–273 (2013).

  • 72.

    Inomata, N., Miyakawa, M. & Aihara, M. High prevalence of sensitization to gibberellin-regulated protein (peamaclein) in fruit allergies with negative immunoglobulin E reactivity to Bet v 1 homologs and profilin: Clinical pattern, causative fruits and cofactor effect of gibberellin-regulated protein allergy. J Dermatol 44, 735–741 (2017).

  • 73.

    Shimane, K. et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 52, 1172–1182 (2013).

  • 74.

    Hvatum, M., Kanerud, L., Hällgren, R. & Brandtzaeg, P. The gut-joint axis: cross reactive food antibodies in rheumatoid arthritis. Gut 55, 1240–1247 (2006).

  • 75.

    McKellar, G. et al. A pilot study of a Mediterranean-type diet intervention in female patients with rheumatoid arthritis living in areas of social deprivation in Glasgow. Ann Rheum Dis 66, 1239–1243 (2007).

  • 76.

    Sköldstam, L., Hagfors, L. & Johansson, G. An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann Rheum Dis 62, 208–214 (2003).

  • 77.

    Nissinen, R. et al. Immune activation in the small intestine in patients with rheumatoid arthritis. Ann Rheum Dis 63, 1327–1330 (2004).

  • 78.

    Porzio, V. et al. Intestinal histological and ultrastructural inflammatory changes in spondyloarthropathy and rheumatoid arthritis. Scand J Rheumatol 26, 92–98 (1997).

  • 79.

    Berdoz, J., Tiercy, J. M., Rollini, P., Mach, B. & Gorski, J. Remarkable sequence conservation of the HLA-DQB2 locus (DX beta) within the highly polymorphic DQ subregion of the human MHC. Immunogenetics 29, 241–248 (1989).

  • 80.

    Yu, L. P. & Sheehy, M. J. The cryptic HLA-DQA2 (”DX alpha”) gene is expressed in human B cell lines. J Immunol 147, 4393–4397 (1991).

  • 81.

    Indovina, P. et al. Absence of in vivo DNA-protein interactions in the DQA2 and DQB2 promoter regions. Hum Immunol 62, 504–508 (2001).

  • 82.

    Lenormand, C. et al. HLA-DQA2 and HLA-DQB2 genes are specifically expressed in human Langerhans cells and encode a new HLA class II molecule. J Immunol 188, 3903–3911 (2012).

  • 83.

    FANTOM_Consortium_and_the_RIKEN_PMI_and_CLST_(DGT) et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

  • 84.

    Lizio, M. et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16, 22 (2015).

  • 85.

    Jaitley, S. & Saraswathi, T. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol 16, 239–244 (2012).

  • 86.

    Chang, S. Y. & Kweon, M. N. Langerin-expressing dendritic cells in gut-associated lymphoid tissues. Immunol Rev 234, 233–246 (2010).

  • 87.

    Clausen, B. E. & Kel, J. M. Langerhans cells: critical regulators of skin immunity. Immunol Cell Biol 88, 351–360 (2010).

  • 88.

    Dubrac, S., Schmuth, M. & Ebner, S. Atopic dermatitis: the role of Langerhans cells in disease pathogenesis. Immunol Cell Biol 88, 400–409 (2010).

  • 89.

    Aricigil, M. et al. New routes of allergen immunotherapy. Am J Rhinol Allergy 30, 193–197 (2016).

  • 90.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575 (2007).

  • 91.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

  • 92.

    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909 (2006).

  • 93.

    Yamaguchi-Kabata, Y. et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet 83, 445–456 (2008).

  • 94.

    Tian, C. et al. Analysis of East Asia genetic substructure using genome-wide SNP arrays. PLoS ONE 3, e3862 (2008).

  • 95.

    R_Core_Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/.

  • 96.

    Mirai_Solutions_GmbH. XLConnect: Excel Connector for R. https://CRAN.R-project.org/package=XLConnect.

  • 97.

    de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17, R122–8 (2008).

  • 98.

    Lee, D. et al. DISTMIX: direct imputation of summary statistics for unmeasured SNPs from mixed ethnicity cohorts. Bioinformatics 31, 3099–3104 (2015).

  • 99.

    Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  • 100.

    Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 48, 1443–1448 (2016).

  • 101.

    Loh, P. R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. Nat Genet 48, 811–816 (2016).

  • 102.

    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81, 1084–1097 (2007).

  • 103.

    Browning, B. L. & Browning, S. R. Genotype Imputation with Millions of Reference Samples. Am J Hum Genet 98, 116–126 (2016).

  • 104.

    Burdett, T. et al. The NHGRI-EBI Catalog of published genome-wide association studies. http://www.ebi.ac.uk/gwas (Accessed February 2, 2017).

  • 105.

    Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36, D773–9 (2008).

  • 106.

    Kent, W. J. et al. The human genome browser at UCSC. Genome Res 12, 996–1006 (2002).

  • 107.

    Griffon, A. et al. Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape. Nucleic Acids Res 43, e27 (2015).

  • 108.

    Carithers, L. J. et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank 13, 311–319 (2015).

  • 109.

    Zheng, X. et al. HIBAG–HLA genotype imputation with attribute bagging. Pharmacogenomics J 14, 192–200 (2014).

  • 110.

    Khor, S. S. et al. High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references. Pharmacogenomics J 15, 530–537 (2015).

  • 111.

    Pappas, D. J., Marin, W., Hollenbach, J. A. & Mack, S. J. Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): An integrated case-control analysis pipeline. Hum Immunol 77, 283–287 (2016).

  • 112.

    Severin, J. et al. Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32, 217–219 (2014).

  • 113.

    González-Galarza, F. F. et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 43, D784–8 (2015).

  • 114.

    South, A. rworldmap: A New R package for Mapping GlobalData. The R Journal 3, 35–43 (2011).



  • Source link

    Products You May Like

    Articles You May Like

    Joke Of The Day – February 20 – Medical News Bulletin
    Can diet and exercise prevent Alzheimer’s disease?
    How Would You Like Your Doctor to Treat Acute Appendicitis? – Medical News Bulletin
    Heart disease in women: Understand symptoms and risk factors
    Glioblastoma: Temozolomide, Bevacizumab May Improve Outcomes Among Elderly Patients

    Leave a Reply

    Your email address will not be published. Required fields are marked *