Diabetes

Abstract Type 1 diabetes is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing β-cells in the pancreatic islets in genetically susceptible subjects. A series of evidence supports a critical role of exogenous factors in the development of type 1 diabetes, such as 1) the fact that
0 Comments
What Do They Have in Common? Abstract Type 1 and type 2 diabetes frequently co-occur in the same families, suggesting common genetic susceptibility. Such mixed family history is associated with an intermediate phenotype of diabetes: insulin resistance and cardiovascular complications in type 1 diabetic patients and lower BMI and less cardiovascular complications as well as
0 Comments
Definition, Prevalence, β-Cell Function, and Treatment Abstract Latent autoimmune diabetes in adults (LADA) is a disorder in which, despite the presence of islet antibodies at diagnosis of diabetes, the progression of autoimmune β-cell failure is slow. LADA patients are therefore not insulin requiring, at least during the first 6 months after diagnosis of diabetes. Among
0 Comments
Abstract Islet cell autoantibodies are strongly associated with the development of type 1 diabetes. The appearance of autoantibodies to one or several of the autoantigens—GAD65, IA-2, or insulin—signals an autoimmune pathogenesis of β-cell killing. A β-cell attack may be best reflected by the emergence of autoantibodies dependent on the genotype risk factors, isotype, and subtype
0 Comments
Abstract Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (Po2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nω-nitro-l-arginine-metyl-ester (l-NAME). NO and Po2 were
0 Comments
A Unifying Mechanism AGE, advanced glycation end product eNOS, endothelial nitric oxide synthase FFA, free fatty acid GAPDH, glyceraldehyde-3 phosphate dehydrogenase MnSOD, manganese superoxide dismutase NFκB, nuclear factor κB PARP, poly(ADP-ribose) polymerase PKC, protein kinase C ROS, reactive oxygen species SOD, superoxide dismutase TCA, tricarboxylic acid UCP, uncoupling protein It’s a great honor to join
0 Comments
Modulation of Islet Hormone Release by GLP-1 Agonism Abstract Glucagon-like peptide (GLP)-1 is a gut hormone that stimulates insulin secretion, gene expression, and β-cell growth. Together with the related hormone glucose-dependent insulinotropic polypeptide (GIP), it is responsible for the incretin effect, the augmentation of insulin secretion after oral as opposed to intravenous administration of glucose.
0 Comments
Abstract This article proposes five stages in the progression of diabetes, each of which is characterized by different changes in β-cell mass, phenotype, and function. Stage 1 is compensation: insulin secretion increases to maintain normoglycemia in the face of insulin resistance and/or decreasing β-cell mass. This stage is characterized by maintenance of differentiated function with
0 Comments
A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes Abstract This study characterizes the high-fat diet–fed mouse as a model for impaired glucose tolerance (IGT) and type 2 diabetes. Female C57BL/6J mice were fed a high-fat diet (58% energy by fat) or a normal diet (11% fat). Body weight
0 Comments
Abstract There has been interest in the effect of various types and amounts of dietary carbohydrates and proteins on blood glucose. On the basis of our previous data, we designed a high-protein/low-carbohydrate, weight-maintaining, nonketogenic diet. Its effect on glucose control in people with untreated type 2 diabetes was determined. We refer to this as a
0 Comments
Relationship With Lipid Metabolism and Insulin Sensitivity Abstract Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the superfamily of nuclear receptors. Three isoforms (α, δ, and γ) have been described. They act on DNA response elements as heterodimers with the nuclear retinoic acid receptor. Their natural activating ligands are fatty acids and lipid-derived substrates.
0 Comments
Abstract Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They are found in all mammals and in plants. They belong to the family of anion mitochondrial carriers including adenine nucleotide transporters. The term “uncoupling protein” was originally used for UCP1, which is uniquely present in mitochondria of brown adipocytes, the
0 Comments
Abstract Stressors such as chronic hyperglycemia or hyperlipidemia may lead to insufficient insulin secretion in susceptible individuals, contributing to type 2 diabetes. The molecules mediating this effect are just beginning to be identified. Uncoupling protein (UCP)-2 may be one such negative modulator of insulin secretion. Accumulating evidence shows that β-cell UCP2 expression is upregulated by
0 Comments
Regulation of Energy Balance and Carbohydrate/Lipid Metabolism Abstract Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones—leptin, acylation stimulating protein (ASP), and adiponectin—with an emphasis on the most recent
0 Comments
Abstract Mitochondria play a central role in cell life and cell death. An increasing number of studies place mitochondrial dysfunction at the heart of disease, most notably in the heart and the central nervous system. In this article, I review some of the key features of mitochondrial biology and focus on the pathways of mitochondrial
0 Comments
Results of the Prospective Population-Based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study Abstract A subclinical inflammatory reaction has been shown to precede the onset of type 2 (non-insulin-dependent) diabetes. We therefore examined prospectively the effects of the central inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) on the development of type
0 Comments
Abstract The incidence of childhood type 1 diabetes increased worldwide in the closing decades of the 20th century, but the origins of this increase are poorly documented. A search through the early literature revealed a number of useful but neglected sources, particularly in Scandinavia. While these do not meet the exacting standards of more recent
0 Comments
Role in β-Cell Adaptation and Failure in the Etiology of Diabetes Abstract β-Cells possess inherent mechanisms to adapt to overnutrition and the prevailing concentrations of glucose, fatty acids, and other fuels to maintain glucose homeostasis. However, this is balanced by potentially harmful actions of the same nutrients. Both glucose and fatty acids may cause good/adaptive
0 Comments
Abstract The physiological effects of glucagon-like peptide-1 (GLP-1) are of immense interest because of the potential clinical relevance of this peptide. Produced in intestinal L-cells through posttranslational processing of the proglucagon gene, GLP-1 is released from the gut in response to nutrient ingestion. Peripherally, GLP-1 is known to affect gut motility, inhibit gastric acid secretion,
0 Comments
Abstract Skeletal muscle is strongly dependent on oxidative phosphorylation for energy production. Because the insulin resistance of skeletal muscle in type 2 diabetes and obesity entails dysregulation of the oxidation of both carbohydrate and lipid fuels, the current study was undertaken to examine the potential contribution of perturbation of mitochondrial function. Vastus lateralis muscle was
0 Comments
Abstract Several studies have linked low birth weight (LBW) and type 2 diabetes. We investigated hepatic and peripheral insulin action including intracellular glucose metabolism in 40 19-year-old men (20 LBW, 20 matched control subjects), using the hyperinsulinemic-euglycemic clamp technique at two physiological insulin levels (10 and 40 mU/m2 per min), indirect calorimetry, and [3-3H]glucose. Insulin
0 Comments
Abstract Chronic low-grade inflammation may be involved in the pathogenesis of insulin resistance and type 2 diabetes. We examined whether a high white blood cell count (WBC), a marker of inflammation, predicts a worsening of insulin action, insulin secretory function, and the development of type 2 diabetes in Pima Indians. We measured WBC in 352
0 Comments
Implications for Diabetes Abstract In intense exercise (>80% Vo2max), unlike at lesser intensities, glucose is the exclusive muscle fuel. It must be mobilized from muscle and liver glycogen in both the fed and fasted states. Therefore, regulation of glucose production (GP) and glucose utilization (GU) have to be different from exercise at <60% Vo2max, in
0 Comments
Abstract Growth hormone (GH) is well known to induce in vivo insulin resistance. However, the molecular mechanism of GH-induced cellular insulin resistance is largely unknown. In this study, we demonstrated that chronic GH treatment of differentiated 3T3-L1 adipocytes reduces insulin-stimulated 2-deoxyglucose (DOG) uptake and activation of Akt (also known as protein kinase B), both of
0 Comments
Abstract Type 1 diabetes generally results from autoimmune destruction of pancreatic islet β-cells, with consequent absolute insulin deficiency and complete dependence on exogenous insulin treatment. The relative paucity of donations for pancreas or islet allograft transplantation has prompted the search for alternative sources for β-cell replacement therapy. In the current study, we used pluripotent undifferentiated
0 Comments