Non-invasive detection of divergent metabolic signals in insulin deficiency vs. insulin resistance in vivo


  • 1.

    Consoli, A., Nurjhan, N., Capani, F. & Gerich, J. Predominant Role of Gluconeogenesis in Increased Hepatic Glucose Production in NIDDM. Diabetes 38, 550–557 (1989).

  • 2.

    Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. Journal of Clinical Investigation 90, 1323–1327 (1992).

  • 3.

    Zoungas, S. et al. Follow-up of Blood-Pressure Lowering and Glucose Control in Type 2 Diabetes. N. Engl. J. Med. 371, 1392–1406 (2014).

  • 4.

    Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. W. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

  • 5.

    Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48, 574–583 (1969).

  • 6.

    Joseph, S. E. et al. Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes 49, 450–456 (2000).

  • 7.

    Meyer, C. et al. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Invest. 102, 619–624 (1998).

  • 8.

    Gerich, J. E., Meyer, C., Woerle, H. J. & Stumvoll, M. Renal gluconeogenesis – Its importance in human glucose homeostasis. Diabetes Care 24, 382–391 (2001).

  • 9.

    Lemieux, G., Aranda, M. R., Fournel, P. & Lemieux, C. Renal enzymes during experimental diabetes mellitus in the rat. Role of insulin, carbohydrate metabolism, and ketoacidosis. Can. J. Physiol. Pharmacol. 62, 70–75 (1984).

  • 10.

    Weber, G., Lea, M. A., Convery, H. J. & Stamm, N. B. Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity. Adv. Enzyme Regul. 5, 257–300 (1967).

  • 11.

    Mithieux, G. et al. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes 45, 891–896 (1996).

  • 12.

    Brown, M. S. & Goldstein, J. L. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 7, 95–96 (2008).

  • 13.

    Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl. Acad. Sci. USA 107, 3441–3446 (2010).

  • 14.

    Ferre, P. & Foufelle, F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes, Obesity and Metabolism 12, 83–92 (2010).

  • 15.

    Reaven, G. M. Relationships Among Insulin Resistance, Type 2 Diabetes, Essential Hypertension, and Cardiovascular Disease: Similarities and Differences. J Clin Hypertens (Greenwich) 13, 238–243 (2011).

  • 16.

    Rocchini, A. P. et al. Insulin and renal sodium retention in obese adolescents. Hypertension 14, 367–374 (1989).

  • 17.

    Peterson, R. G., Shaw, W. N., Neel, M.-A., Little, L. A. & Eichberg, J. Zucker Diabetic Fatty Rat as a Model for Non-insulin-dependent Diabetes Mellitus. ILAR J 32, 16–19 (1990).

  • 18.

    Etgen, G. J. & Oldham, B. A. Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49, 684–688 (2000).

  • 19.

    Kurtz, T. W., Morris, R. C. & Pershadsingh, H. A. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 13, 896–901 (1989).

  • 20.

    Fujimoto, Y., Torres, T. P., Donahue, E. P. & Shiota, M. Glucose toxicity is responsible for the development of impaired regulation of endogenous glucose production and hepatic glucokinase in Zucker diabetic fatty rats. Diabetes 55, 2479–2490 (2006).

  • 21.

    Lee, W. N. P., Bassilian, S., Lim, S. & Boros, L. G. Loss of regulation of lipogenesis in the Zucker diabetic (ZDF) rat. Am. J. Physiol. Endocrinol. Metab. 279, E425–E432 (2000).

  • 22.

    Bassilian, S. et al. Loss of regulation of lipogenesis in the Zucker diabetic rat. II. Changes in stearate and oleate synthesis. Am. J. Physiol. Endocrinol. Metab. 282, E507–E513 (2002).

  • 23.

    Resch, M. et al. Hyperaldosteronism and altered expression of an SGK1-dependent sodium transporter in ZDF rats leads to salt dependence of blood pressure. Hypertens. Res. 33, 1082–1088 (2010).

  • 24.

    Large, V. & Beylot, M. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes 48, 1251–1257 (1999).

  • 25.

    Shimomura, I. et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. PNAS 96, 13656–13661 (1999).

  • 26.

    Tatchum-Talom, R., Gopalakrishnan, V. & McNeill, J. R. Radiotelemetric monitoring of blood pressure and mesenteric arterial bed responsiveness in rats with streptozotocin-induced diabetes. Can. J. Physiol. Pharmacol. 78, 721–728 (2000).

  • 27.

    Hartmann, J. F., Chen, S. L., Szemplinski, M. & Slater, E. E. Effect of insulin pump therapy on blood pressure and the renin-angiotensin system of diabetic rats. Horm. Metab. Res. 22, 141–144 (1990).

  • 28.

    Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003).

  • 29.

    Golman, K., Zandt, R. I., Lerche, M., Pehrson, R. & Ardenkjaer-Larsen, J. H. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res. 66, 10855–10860 (2006).

  • 30.

    Nelson, S. J. et al. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-C-13]Pyruvate. Sci Transl Med 5, (2013).

  • 31.

    Cunningham, C. H. et al. Hyperpolarized 13C Metabolic MRI of the HumanHeart: Initial Experience. Circ. Res. CIRCRESAHA. 116, 309769, (2016).

  • 32.

    Laustsen, C. et al. Assessment of early diabetic renal changes with hyperpolarized [1‐13C]pyruvate. Diabetes/Metabolism Research and Reviews 29, 125–129 (2013).

  • 33.

    Lee, P. et al. In Vivo hyperpolarized carbon‐13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin‐resistant mouse model. Hepatology 57, 515–524 (2013).

  • 34.

    Keshari, K. R. et al. Noninvasive In Vivo Imaging of Diabetes-Induced Renal Oxidative Stress and Response to Therapy Using Hyperpolarized 13C Dehydroascorbate Magnetic Resonance. Diabetes 64, 344–352 (2015).

  • 35.

    Schroeder, M. A. et al. In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc. Natl. Acad. Sci. USA 105, 12051–12056 (2008).

  • 36.

    von Morze, C. et al. Detection of localized changes in the metabolism of hyperpolarized gluconeogenic precursors (13) C-lactate and (13) C-pyruvate in kidney and liver. Magn Reson Med. (2016).

  • 37.

    Williamson, D. H., Lund, P. & Krebs, H. A. Redox State of Free Nicotinamide-Adenine Dinucleotide in Cytoplasm and Mitochondria of Rat Liver. Biochem. J. 103, 514–& (1967).

  • 38.

    Krebs, H. A. Gluconeogenesis and redox state. Hoppe-Seyler’s Z. Physiol. Chem. 351, 288 (1970).

  • 39.

    Veech, R. L., Raijman, L. & KREBS, H. A. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide–adenine nucleotide system in rat liver. Biochem. J. 117, 499–503 (1970).

  • 40.

    Varoqui, H. & Erickson, J. D. Selective up-regulation of system a transporter mRNA in diabetic liver. Biochem. Biophys. Res. Commun. 290, 903–908 (2002).

  • 41.

    Bröer, S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 466, 155–172 (2014).

  • 42.

    Day, S. E. et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387 (2007).

  • 43.

    Hurd, R. E. et al. Exchange-linked dissolution agents in dissolution-DNP (13)C metabolic imaging. Magn Reson Med 70, 936–942 (2013).

  • 44.

    Chakravarty, K., Cassuto, H., Reshef, L. & Hanson, R. W. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit. Rev. Biochem. Mol. Biol. 40, 129–154 (2005).

  • 45.

    Krebs, H. A., Gascoyne, T. & Notton, B. M. Generation of extramitochondrial reducing power in gluconeogenesis. Biochem. J. 102, 275–282 (1967).

  • 46.

    Rosen, F., Roberts, N. R. & Nichol, C. A. Glucocorticosteroids and transaminase activity. I. Increased activity of glutamicpyruvic transaminase in four conditions associated with gluconeogenesis. J. Biol. Chem. 234, 476–480 (1959).

  • 47.

    Williamson, D. H., Lopes-Vieira, O. & Walker, B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem. J. 104, 497–502 (1967).

  • 48.

    Wijekoon, E. P., Skinner, C., Brosnan, M. E. & Brosnan, J. T. Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can. J. Physiol. Pharmacol. 82, 506–514 (2004).

  • 49.

    Llorente, P., Marco, R. & Sols, A. Regulation of liver pyruvate kinase and the phosphoenolpyruvate crossroads. Eur. J. Biochem. 13, 45–54 (1970).

  • 50.

    Stevens, H. C., Covey, T. R. & Dills, W. L. Inhibition of gluconeogenesis by 2,5-anhydro-D-mannitol in isolated rat hepatocytes. Biochim. Biophys. Acta 845, 502–506 (1985).

  • 51.

    Kodama, H., Fujita, M. & Yamaguchi, I. Differential hypoglycemic effect of 2,5-anhydro-D-mannitol, a putative gluconeogenesis inhibitor, in genetically diabetic (db/db) and streptozotocin-induced diabetic mice. Jpn. J. Pharmacol. 66, 331–336 (1994).

  • 52.

    Veech, R. L., Eggleston, L. V. & KREBS, H. A. The redox state of free nicotinamide–adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115, 609–619 (1969).

  • 53.

    Rogers, K. S., Higgins, E. S. & Kline, E. S. Experimental diabetes causes mitochondrial loss and cytoplasmic enrichment of pyridoxal phosphate and aspartate aminotransferase activity. Biochem. Med. Metab. Biol. 36, 91–97 (1986).

  • 54.

    Masoro, E. J. & Porter, E. A comparison of fatty acid synthesis by liver and kidney. Proc. Soc. Exp. Biol. Med. 118, 1090–1095 (1965).

  • 55.

    Palm, F., Ortsater, H., Hansell, P., Liss, P. & Carlsson, P. O. Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes/Metabolism Research and Reviews 20, 452–459 (2004).

  • 56.

    Shiota, M. & Printz, R. L. in Animal Models in Diabetes Research 103–123 (Humana Press, 2012).

  • 57.

    Zhao, L., Mulkern, R. & Tseng, C. H. Zhao. Gradient-echo imaging considerations for hyperpolarized 129Xe MR. J Magn Reson B 113(2), 179–83 (1996).

  • 58.

    Freeman, T. L., Ngo, H. Q. & Mailliard, M. E. Inhibition of system A amino acid transport and hepatocyte proliferation following partial hepatectomy in the rat. Hepatology 30, 437–444 (1999).

  • 59.

    Hu, S. et al. Rapid sequential injections of hyperpolarized [1-¹³C]pyruvate in vivo using a sub-kelvin, multi-sample DNP polarizer. Magn Reson Imaging 31, 490–496 (2013).

  • 60.

    Rosset, A., Spadola, L. & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17, 205–216 (2004).

  • Source link

    Products You May Like

    Articles You May Like

    Laryngospasm: What causes it? – Mayo Clinic
    Hospital Patients with Dementia Twice as Likely to Return Within 30 Days
    You’re Out of A Job
    Super Frank Lampard’s Sports Science Secrets
    Shuang-Huang-Lian injection induces an immediate hypersensitivity reaction via C5a but not IgE

    Leave a Reply

    Your email address will not be published. Required fields are marked *