Thyroid stimulating hormone stimulates the expression of glucose transporter 2 via its receptor in pancreatic β cell line, INS-1 cells

Diabetes


  • 1.

    Kopp, P. The TSH receptor and its role in thyroid disease. Cellular and molecular life sciences: CMLS 58, 1301–1322 (2001).

  • 2.

    de Lloyd, A., Bursell, J., Gregory, J. W., Rees, D. A. & Ludgate, M. TSH receptor activation and body composition. The Journal of endocrinology 204, 13–20, https://doi.org/10.1677/JOE-09-0262 (2010).

  • 3.

    Davies, T., Marians, R. & Latif, R. The TSH receptor reveals itself. The Journal of clinical investigation 110, 161–164, https://doi.org/10.1172/JCI16234 (2002).

  • 4.

    Rodriguez-Castelan, J., Nicolas, L., Morimoto, S. & Cuevas, E. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size. Endocrine 48, 811–817, https://doi.org/10.1007/s12020-014-0418-4 (2015).

  • 5.

    Morshed, S. A. & Davies, T. F. Graves’ Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 47, 727–734, https://doi.org/10.1055/s-0035-1559633 (2015).

  • 6.

    Jap, T. S., Ho, L. T. & Won, J. G. Insulin secretion and sensitivity in hyperthyroidism. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 21, 261–266, https://doi.org/10.1055/s-2007-1009208 (1989).

  • 7.

    Kapadia, K. B., Bhatt, P. A. & Shah, J. S. Association between altered thyroid state and insulin resistance. J Pharmacol Pharmacother 3, 156–160, https://doi.org/10.4103/0976-500X.95517 (2012).

  • 8.

    Yoshida, K. et al. Pancreatic glucokinase is activated by insulin-like growth factor-I. Endocrinology 148, 2904–2913, https://doi.org/10.1210/en.2006-1149 (2007).

  • 9.

    Bech, K. et al. Beta-cell function and glucose and lipid oxidation in Graves’ disease. Clinical endocrinology 44, 59–66 (1996).

  • 10.

    Guillam, M. T. et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature genetics 17, 327–330, https://doi.org/10.1038/ng1197-327 (1997).

  • 11.

    Thorens, B. GLUT2 in pancreatic and extra-pancreatic gluco-detection (review). Mol Membr Biol 18, 265–273 (2001).

  • 12.

    Newgard, C. B. & McGarry, J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem 64, 689–719, https://doi.org/10.1146/annurev.bi.64.070195.003353 (1995).

  • 13.

    Hughes, S. D., Quaade, C., Johnson, J. H., Ferber, S. & Newgard, C. B. Transfection of AtT-20ins cells with GLUT-2 but not GLUT-1 confers glucose-stimulated insulin secretion. Relationship to glucose metabolism. The Journal of biological chemistry 268, 15205–15212 (1993).

  • 14.

    Brenta, G., Danzi, S. & Klein, I. Potential therapeutic applications of thyroid hormone analogs. Nat Clin Pract Endocrinol Metab 3, 632–640, https://doi.org/10.1038/ncpendmet0590 (2007).

  • 15.

    Ortega, E., Koska, J., Pannacciulli, N., Bunt, J. C. & Krakoff, J. Free triiodothyronine plasma concentrations are positively associated with insulin secretion in euthyroid individuals. European journal of endocrinology/European Federation of Endocrine Societies 158, 217–221, https://doi.org/10.1530/EJE-07-0592 (2008).

  • 16.

    Sun, S. C. et al. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. The Journal of biological chemistry 285, 3758–3765, https://doi.org/10.1074/jbc.M109.066266 (2010).

  • 17.

    Zhao, F. Q. & Keating, A. F. Functional properties and genomics of glucose transporters. Curr Genomics 8, 113–128 (2007).

  • 18.

    Augustin, R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB life 62, 315–333, https://doi.org/10.1002/iub.315 (2010).

  • 19.

    Kasanicki, M. A. & Pilch, P. F. Regulation of glucose-transporter function. Diabetes care 13, 219–227 (1990).

  • 20.

    Garvey, W. T., Huecksteadt, T. P., Matthaei, S. & Olefsky, J. M. Role of glucose transporters in the cellular insulin resistance of type II non-insulin-dependent diabetes mellitus. The Journal of clinical investigation 81, 1528–1536, https://doi.org/10.1172/JCI113485 (1988).

  • 21.

    Sandouk, T., Reda, D. & Hofmann, C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 133, 352–359, https://doi.org/10.1210/endo.133.1.8319581 (1993).

  • 22.

    Nizamutdinova, I. T. et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Molecular nutrition & food research 53, 1419–1429, https://doi.org/10.1002/mnfr.200800526 (2009).

  • 23.

    Idris, I. & Donnelly, R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes, obesity & metabolism 11, 79–88, https://doi.org/10.1111/j.1463-1326.2008.00982.x (2009).

  • 24.

    Lin, J. & Chen, A. Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2. Molecular and cellular endocrinology 333, 160–171, https://doi.org/10.1016/j.mce.2010.12.028 (2011).

  • 25.

    Unger, R. H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science 251, 1200–1205 (1991).

  • 26.

    Guillemain, G. et al. Karyopherinalpha2: a control step of glucose-sensitive gene expression in hepatic cells. The Biochemical journal 364, 201–209 (2002).

  • 27.

    Gouyon, F. et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. The Journal of physiology 552, 823–832, https://doi.org/10.1113/jphysiol.2003.049247 (2003).

  • 28.

    Guillam, M. T., Burcelin, R. & Thorens, B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 95, 12317–12321 (1998).

  • 29.

    Guillam, M. T., Dupraz, P. & Thorens, B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 49, 1485–1491 (2000).

  • 30.

    Matschinsky, F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39, 647–652 (1990).

  • 31.

    Chen, K. et al. Exendin-4 regulates GLUT2 expression via the CaMKK/CaMKIV pathway in a pancreatic beta-cell line. Metabolism: clinical and experimental 60, 579–585, https://doi.org/10.1016/j.metabol.2010.06.002 (2011).

  • 32.

    Holz, G. G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004).

  • 33.

    Helliwell, P. A., Richardson, M., Affleck, J. & Kellett, G. L. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes. The Biochemical journal 350(Pt 1), 163–169 (2000).

  • 34.

    Davis, R. J. The mitogen-activated protein kinase signal transduction pathway. The Journal of biological chemistry 268, 14553–14556 (1993).

  • 35.

    Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. The Journal of biological chemistry 270, 7420–7426 (1995).

  • 36.

    Enslen, H., Raingeaud, J. & Davis, R. J. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. The Journal of biological chemistry 273, 1741–1748 (1998).

  • 37.

    Pomerance, M., Abdullah, H. B., Kamerji, S., Correze, C. & Blondeau, J. P. Thyroid-stimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, rac1, and reactive oxygen species. The Journal of biological chemistry 275, 40539–40546, https://doi.org/10.1074/jbc.M002097200 (2000).

  • 38.

    Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et biophysica acta 1773, 1358–1375, https://doi.org/10.1016/j.bbamcr.2007.03.010 (2007).

  • 39.

    Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS letters 364, 229–233 (1995).

  • 40.

    Wang, X. S. et al. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. The Journal of biological chemistry 272, 23668–23674 (1997).

  • 41.

    Rencurel, F. et al. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. The Biochemical journal 314(Pt 3), 903–909 (1996).

  • 42.

    Uyeda, K. & Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell metabolism 4, 107–110, https://doi.org/10.1016/j.cmet.2006.06.008 (2006).

  • 43.

    Wang, H., Kouri, G. & Wollheim, C. B. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. Journal of cell science 118, 3905–3915, https://doi.org/10.1242/jcs.02513 (2005).

  • 44.

    Li, D. S., Yuan, Y. H., Tu, H. J., Liang, Q. L. & Dai, L. J. A protocol for islet isolation from mouse pancreas. Nature protocols 4, 1649–1652, https://doi.org/10.1038/nprot.2009.150 (2009).

  • 45.

    Murao, K. et al. Exendin-4 regulates glucokinase expression by CaMKK/CaMKIV pathway in pancreatic beta-cell line. Diabetes, obesity & metabolism 11, 939–946, https://doi.org/10.1111/j.1463-1326.2009.01067.x (2009).

  • 46.

    Lyu, J., Hu, Y., Xu, X. & Zhang, H. Dynamics of focal adhesions and reorganization of F-actin in VEGF-stimulated NSCs under varying differentiation states. Journal of cellular biochemistry, https://doi.org/10.1002/jcb.24517 (2013).

  • 47.

    Yu, X. et al. The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Diabetes 53, 1475–1481 (2004).

  • 48.

    Fukata, Y. et al. 17beta-Estradiol regulates scavenger receptor class BI gene expression via protein kinase C in vascular endothelial cells. Endocrine 46, 644–650, https://doi.org/10.1007/s12020-013-0134-5 (2014).

  • 49.

    Garcia-Arevalo, M. et al. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PloS one 9, e100214, https://doi.org/10.1371/journal.pone.0100214 (2014).



  • Source link

    Products You May Like

    Articles You May Like

    Prostate Cancer: Can Metformin Reduce Your Risk? – Medical News Bulletin
    Today In Medical History – February 20 – Medical News Bulletin
    Five European Bike Festivals Where You Can Take An E-Bike Off-Road
    Among New Male Drivers, Teens Outperform Men in 20s
    Social Media Does Not Significantly Harm Adolescent Academic Performance

    Leave a Reply

    Your email address will not be published. Required fields are marked *